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Abstract. We present two tests that solve linear integer arithmetic con-
straints. These tests are sound and efficiently find solutions for a large
number of problems. While many complete methods search along the
problem surface for a solution, these tests use cubes to explore the in-
terior of the problems. The tests are especially efficient for constraints
with a large number of integer solutions, e.g., those with infinite lattice
width. Inside the SMT-LIB benchmarks, we have found almost one thou-
sand problem instances with infinite lattice width, and we have shown
the advantage of our cube tests on these instances by comparing our im-
plementation of the cube test with several state-of-the-art SMT solvers.
Our implementation is not only several orders of magnitudes faster, but
it also solves all instances, which most SMT solvers do not. Finally, we
discovered an additional application for our cube tests: the extraction of
equalities implied by a system of linear arithmetic inequalities. This ex-
traction is useful both as a preprocessing step for linear integer constraint
solving as well as for the combination of theories by the Nelson-Oppen
method.
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1 Introduction

Finding an integer solution for a polyhedron that is defined by a system of
linear inequalities Ax ≤ b is a well-known NP-complete problem [18]. Systems
of linear inequalities have many real-world applications so that this problem has
been investigated in different research areas, e.g., in optimization via (mixed)
integer linear programming (MILP) [15] and in constraint solving via satisfiability
modulo theories (SMT) [2, 4, 7, 12].

It is standard for commercial MILP implementations to integrate preprocess-
ing techniques, heuristics, and specialized tests [15]. Although these techniques
are not complete, they are much more efficient on their designated target sys-
tems of linear inequalities than a complete algorithm alone. Since there exist
specialized techniques for many classes of real-world problems representable as
polyhedra, commercial MILP solvers are efficient on many real-world inputs—
even though the problem, in general, is NP-complete.
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The constraint solving community is still in the process of developing the
same variety in specialized tests as the MILP community. The biggest challenge
is to adopt the tests from the MILP community so that they still fit the input
systems relevant for constraint solving. For example, SMT theory solvers have
to solve a large number of incrementally connected, small systems of linear in-
equalities. Exploiting this incremental connection is key for making SMT theory
solvers efficient [11]. In contrast, MILP solvers typically target one large system.
The same holds for their specialized tests, which are not well suited to exploit
incremental connections.

In this paper, we present two tests tailored toward SMT solvers: the largest
cube test and the unit cube test. The idea is to find hypercubes that are contained
inside the input polyhedron and guarantee the existence of an integer solution.
Due to computational complexity, we will restrict ourselves to only those hy-
percubes that are parallel to the coordinate axes. The largest cube test finds a
hypercube with maximum edge length contained in the input polyhedron, deter-
mines its real valued center, and rounds it to a potential integer solution. The
unit cube test determines if a polyhedron contains a hypercube with edge length
one, which is the minimal edge length that guarantees an integer solution.

Most SMT linear integer arithmetic theory solvers are based on a branch-
and-bound algorithm on top of the simplex algorithm. They search for a solution
at the surface of a polyhedron. However, our tests search in the interior of the
polyhedron. This gives them an advantage on polyhedra with a large number of
integer solutions, e.g., polyhedra with infinite lattice width [16]. Since the only
difference between the input polyhedron Ax ≤ b and the associated unit cube
polyhedron Ax ≤ b′ are the row bounds, our unit cube test is especially easy to
implement and integrate into SMT theory solvers.

SMT theory solvers are designed to efficiently exchange bounds [9]. This
efficient exchange is the main reason why SMT theory solvers exploit the incre-
mental connection between the different polyhedra so well. Our unit cube test
also requires only an exchange of bounds. After applying the test, we can easily
recover the original polyhedron by reverting to the original bounds. In doing so,
the unit cube test conserves the incremental connection between the different
original polyhedra. We make a similar observation about the largest cube test.

A variant of the linear program for the unit cube test first appeared in 1969 as
a subroutine in a heuristic by Hillier for MILP optimization [13]. While Hillier
was aware of the unit cube test, he applied it only to cones, a special class
of polyhedra. His work never mentioned applications beyond cones, nor did he
prove any structural properties connected to hypercubes. As mentioned before,
the main advantage of the cube tests is that they compute interior point candi-
dates. The same can be done using an interior point method [17] instead of the
simplex algorithm. Therefore, Hillier’s heuristic tailored for MILP optimization
lost popularity as soon as interior point methods became efficient in practice.
Nonetheless, our cube tests remain relevant for SMT theory solvers because there
are no competitive incremental interior point methods.
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Also, Bobot et al. discuss relations between hypercubes, called∞-norm balls,
and polyhedra [2]. In their paper, they detail the same relation between polyhe-
dra with infinite lattice width and hypercubes that we discovered. Their work
also includes a linear optimization program that detects polyhedra with infinite
lattice width and positive linear combinations between inequalities. Our largest
cube test can detect all of the above because it is, with some minor changes, the
dual of the linear optimization program of Bobot et al. However, our tests are a
lot closer to the original polyhedron and are, therefore, easier to construct, and
the tests produce sample points as well. Via rounding, our tests use these sample
points to compute an actual integer solution as proof. Moreover, our cube tests
also find solutions for polyhedra with finite lattice width.

Our contributions are as follows: we define the linear cube transformation
(Corollary 3) that allows us to efficiently compute whether a polyhedron Ax ≤
b contains a hypercube of edge length e by solely changing the bounds b in
Section 3. Based on this transformation, we develop in Section 4 two tests: the
largest cube test and the unit cube test. For polyhedra with infinite lattice
width, both tests always succeed (Lemma 5). Inside the SMT-LIB benchmarks,
there are almost one thousand problem instances with infinite lattice width, and
we show the advantage of our cube tests on these instances by comparing our
implementation of the cube test with several state-of-the-art SMT solvers in
Section 5. Our implementation is not only several orders of magnitudes faster,
but it also solves all instances, which most SMT solvers do not (Figure 7). It is
more robust than the test suggested by Bobot et al. [2] (Figure 7). Eventually, we
introduce in Section 6 an additional application for our cube tests: the extraction
of equalities implied by a system of linear arithmetic inequalities. The paper ends
with a discussion on possible directions for future research, Section 7.

2 Preliminaries

While the difference between matrices, vectors, and their components is always
clear in context, we generally use upper case letters for matrices (e.g., A), lower
case letters for vectors (e.g., x), and lower case letters with an index i or j (e.g.,
bi, xj) as components of the associated vector at position i or j, respectively.
The only exceptions are the row vectors aTi = (ai1, . . . , ain) of a matrix A =
(a1, . . . , am)T , which already contain an index i that indicates the row’s position
inside A. In order to save space, we write vectors only implicitly as columns
via the transpose ( )T operator, which turns all rows (b1, . . . , bm) into columns
(b1, . . . , bm)T and vice versa. We will also abbreviate (. . . , 0, . . .)T as 0.

In this paper, we treat polyhedra and their definitions through a system of
inequalities Ax ≤ b as interchangeable. For such a system of inequalities, the
row coefficients are given by A = (a1, . . . , am)T ∈ Qm×n, the inequality
bounds are given by b = (b1, . . . , bm)T ∈ Qm, and the variables are given by
x = (x1, . . . , xn)T .

We denote by PA
b = {x ∈ Rn : Ax ≤ b} the set of real solutions to the

system of inequalities Ax ≤ b and, therefore, the points inside the polyhedron.
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Similarly, we denote by Cn
e (z) =

{
x ∈ Rn : ∀j ∈ 1, . . . , n. |xj − zj | ≤ e

2

}
the set

of points contained in the n-dimensional hypercube Cn
e (z) that is parallel to

the coordinate axes, has edge length e ∈ R≥0, and has center z ∈ Rn. For the
remainder of this paper, we will consider only hypercubes that are parallel to
the coordinate axes. For simplicity, we call these restricted hypercubes cubes.
Similar to polyhedra, we will use the set of points Cn

e (z) interchangeably with
the cube defined by the set.

Besides cubes and polyhedra, we use multiple p-norms ‖.‖p in this paper [10].
These p-norms are defined as functions (‖.‖p : Rn → R) for p ≥ 1 such that

‖x‖p = (|x1|p + . . . + |xn|p)
1/p

. A special p-norm is the maximum norm. It is
defined by the limit of ‖.‖p for p → ∞: ‖x‖∞ = max {|x1|, . . . , |xn|}. If we
compare the maximum norm and the definition of Cn

e (z), we see that cubes and
p-norms are related:

(
‖x− z‖∞ ≤

e
2

)
⇐⇒

(
∀j ∈ 1, . . . , n. |xj − zj | ≤ e

2

)
.

Using p-norms, we define a closest integer for a point x as a point x′ ∈ Zn

with minimal distance ‖x− x′‖p for all p-norms. We also define the operators
dxjc and dxc such that they describe a closest integer for xj and x, respectively.
Formally, this means that dxc = (dx1c, . . . , dxnc)T and

dxjc =

{
bxjc if xj − bxjc < 0.5 ,
dxje if xj − bxjc ≥ 0.5 .

This definition of dxc is also known as simple rounding.

Lemma 1. For x ∈ Rn, dxc is a closest integer to x:
∀p ≥ 1. ∀x′ ∈ Zn. ‖x− dxc‖p ≤ ‖x− x′‖p .

Proof. We first look at the one-dimensional case, where ‖xj‖p simplifies to |xj |:
∀p ≥ 1. ∀x′j ∈ Z. |xj − dxjc| ≤ |xj − x′j | .

For dxjc, x′j ∈ Z, there exists zj ∈ Z such that x′j = dxjc − zj . For xj ∈ R, there
exists a dj ∈ [−0.5, 0.5] such that dj := xj − dxjc. The inequality trivially holds
for zj = 0:

|xj − x′j | = |xj − dxjc+ zj | = |xj − dxjc| .
Via the triangle inequality, for the remaining zj 6= 0 we get :

|xj − x′j | = |xj − dxjc+ zj | = |dj + zj | ≥ |zj | − |dj | .
Since zj 6= 0, and dj ∈ [−0.5, 0.5] imply |zj | ≥ 1, and |dj | ≤ 0.5, respectively, we
get:

|xj − x′j | ≥ |zj | − |dj | ≥ 1− |dj | ≥ 0.5 ≥ |dj | = |xj − dxjc| .
The multidimensional case follows from the p-norms’ monotonicity [10], i.e.,

if |xj −dxjc| ≤ |xj −x′j | for all j ∈ {1, . . . , n}, then ‖x− dxc‖p ≤ ‖x− x′‖p .

3 Fitting Cubes into Polyhedra

We say that a cube Cn
e (z) fits into a polyhedron defined by Ax ≤ b if all points

inside the cube Cn
e (z) are solutions of Ax ≤ b, or formally: Cn

e (z) ⊆ PA
b . In order

to compute this, we transform the polyhedron Ax ≤ b into another polyhedron
Ax ≤ b′. For this new polyhedron, we merely have to test whether the cube’s
center point z is a solution (z ∈ PA

b′) in order to also determine whether the
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Fig. 1. A square (two-
dimensional cube) fitting
into an inequality aT

i x ≤
bi and the cube’s maximum
aT
i x
∗ for the objective aT

i x

Fig. 2. The vertices of an
arbitrary square parallel to
the coordinate axes (two-
dimensional cube with edge
length e and center z)

Fig. 3. The transformed
polyhedron Ax ≤ b′ for
edge length 1 together with
the original polyhedron
Ax ≤ b

cube Cn
e (z) fits into the original polyhedron (Cn

e (z) ⊆ PA
b ). This is a simple test

that requires only evaluation. We call this entire transformation the linear cube
transformation.

We start explaining the linear cube transformation by looking at the case
where the polyhedron is defined by a single inequality aTi x ≤ bi. A cube Cn

e (z)
fits into the inequality aTi x ≤ bi if all points inside the cube Cn

e (z) are solutions
of aTi x ≤ bi, or formally: ∀x ∈ Cn

e (z). aTi x ≤ bi.

We can think of aTi x as an objective function that we want to maximize and
see bi as a guard for the maximum objective of any solution in the cube. Thus,
we can express the universal quantifier in the above equation as an optimization
problem (see Figure 1): max{aTi x : x ∈ Cn

e (z)} ≤ bi. This also means that
all points in x ∈ Cn

e (z) satisfy the inequality aTi x ≤ bi if a point x∗ ∈ Cn
e (z)

with maximum value aTi x
∗ = max{aTi x : x ∈ Cn

e (z)} for the objective function
aTi x satisfies the inequality aTi x

∗ ≤ bi. We can formalize the above optimization
problem as a linear program:

maximize aTi x
subject to zj − e

2 ≤ xj ≤ zj + e
2 for j = 1, . . . , n .

However, for the case of cubes, there is an even easier way to determine the
maximum objective value. Since every cube is a bounded polyhedron, one of
the points with maximum objective value is a vertex xv ∈ Cn

e (z). A vertex xv

of the cube Cn
e (z) is one of the points with maximum distance to the center z

(see Figure 2), or formally: xv =
(
z1 ± e

2 , . . . , zn ±
e
2

)T
. If we insert the above

equation into the objective function aTi x, we get:

aTi
(
z1 ± e

2 , . . . , zn ±
e
2

)T
= aTi z + e

2

∑n
j=1±aij ,

which in turn is maximal if we choose xv such that ±aij is always positive:
aTi x

v = aTi z + e
2

∑n
j=1 |aij | = aTi z + e

2 ‖ai‖1 .

Hence, we transform the inequality aTi x ≤ bi into aTi x ≤ bi − e
2 ‖ai‖1, and

Cn
e (z) fits into aTi x ≤ bi if aTi z ≤ bi − e

2 ‖ai‖1.
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Corollary 2. Let Cn
e (z) be a cube and aTi x ≤ bi be an inequality. All x ∈ Cn

e (z)
fulfill aTi x ≤ bi if and only if aTi z ≤ bi − e

2 ‖ai‖1.

Next, we look at the case where multiple inequalities aTi x ≤ bi (for i =
1, . . . ,m) define the polyhedron Ax ≤ b. Since PA

b is the intersection of all P ai

bi
,

the cube fits into Ax ≤ b if and only if it fits into all inequalities aTi x ≤ bi,
respectively:

∀i ∈ {1, . . . ,m}. ∀x ∈ Cn
e (z). aTi x ≤ bi .

We can express this by m optimization problems:
∀i ∈ {1, . . . ,m}. max{aTi x : x ∈ Cn

e (z)} ≤ bi
and, after applying Corollary 2, by the following m inequalities:

∀i ∈ {1, . . . ,m}. aTi z ≤ bi − e
2 ‖ai‖1 .

Hence, the linear cube transformation transforms the polyhedron Ax ≤ b into
the polyhedron Ax ≤ b′, where b′i = bi − e

2 ‖ai‖1, and Cn
e (z) fits into Ax ≤ b if

Az ≤ b′.

Corollary 3. Let Cn
e (z) be a cube and Ax ≤ b be a polyhedron. Cn

e (z) ⊆ PA
b if

and only if Az ≤ b′, where b′i = bi − e
2 ‖ai‖1.

Until now, we have discussed how to use the linear cube transformation to
determine if one cube Cn

e (z) with fixed center point z fits into a polyhedron
Ax ≤ b. A generalization of this problem determines whether a polyhedron
Ax ≤ b contains a cube of edge length e at all. Actually, a closer look at the
transformed polyhedron Ax ≤ b′ reveals that the linear cube transformation
(b′i = bi− e

2 ‖ai‖1) is dependent only on the edge length e of the cube. Therefore,
the solutions PA

b′ of the transformed polyhedron Ax ≤ b′ are exactly all center
points of cubes with edge length e that fit into the original polyhedron Ax ≤ b
(see Figure 3). By determining the satisfiability of the transformed polyhedron
Ax ≤ b′, we can now also determine whether a polyhedron Ax ≤ b contains a
cube of edge length e at all. If we choose a suitable algorithm, e.g., the simplex
algorithm, then we even get the center point z of a cube Cn

e (z) that fits into
Ax ≤ b. This observation is the foundation for the cube tests that we will present
in Section 4.

4 Fast Cube Tests

In contrast to arbitrary polyhedra, determining whether a cube Cn
e (z) contains

an integer point is easy. Because of the cubes symmetry, it is enough to test
whether it contains a closest integer point dzc to the center z.

Lemma 4. A cube Cn
e (z) contains an integer point if and only if it contains a

closest integer point dzc to the center z.

Proof. The implication from left to right follows directly from Lemma 1 and
from the relation between the maximum norm and cubes. The implication from
right to left is obvious.
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Fig. 4. The largest cube in-
side a polyhedron, its center
point, and a closest integer
point to the center

Fig. 5. An infinite lattice
width polyhedron, contain-
ing cubes for every edge
length e > 0.

Fig. 6. A unit cube in-
side a polyhedron, its center
point, and a closest integer
point to the center

Note that every point z ∈ Rn is also a cube Cn
0 (z) of edge length 0. In order

to be efficient, our tests will look only at cubes with special properties. In the
case of the largest cube test, we check for an integer solution in one of the largest
cubes fitting into the polyhedron Ax ≤ b. In the case of the unit cube test, we
look for a cube of edge length one, which always guarantees an integer solution.
Due to these restrictions, both tests are not complete but very fast to compute.

4.1 Largest Cube Test

A well-known test, implemented in most ILP solvers, is simple rounding. For
simple rounding, the ILP solver computes a real solution x for a set of inequali-
ties, rounds it to a closest integer dxc, and determines whether this point is an
integer solution. Not all types of real solutions are good candidates for this test
to be successful. Especially surface points, such as vertices, the usual output of
the simplex algorithm, are not good candidates for rounding. For many polyhe-
dra, center and interior points z are a better choice because all integer points
adjacent to z are solutions, including a closest integer point dzc.

To calculate a real center point with the simplex algorithm, we use the linear
cube transformation (Section 3). The center point will be the center point of a
largest cube that fits into the polyhedron Ax ≤ b (see Figure 4). We determine
the center z of this largest cube and the associated edge length e with the
following LP:

maximize xe

subject to Ax + a′ xe

2 ≤ b, where a′i = ‖ai‖1
xe ≥ 0 .

This linear program employs the linear cube transformation from Section 3. The
only generalization is a variable xe for the edge length instead of a constant value
e. Additionally, this linear program maximizes the edge length as an optimization
goal.
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If the resulting maximum edge length is unbounded, the original polyhedron
contains cubes of arbitrary edge length (see Figure 5) and, thus, infinitely many
integer solutions. Since the linear program contains all solutions of the original
polyhedron (see xe = 0), the original polyhedron is empty if and only if the
above linear program is infeasible. If the maximum edge length is a finite value
e, we use the resulting assignment z for the variables x as a center point and
Cn
e (z) is a largest cube that fits into the polyhedron. From the center point,

we round to a closest integer point dzc and determine if it fits into the original
polyhedron. If this is the case, we are done because we have found an integer
solution for Ax ≤ b. Otherwise, the largest cube test does not know whether
or not Ax ≤ b has an integer solution. An example for the latter case, are the
following inequalities: 3x1 − x2 ≤ 0, −2x1 − x2 ≤ −2, and −2x1 + x2 ≤ 1.
These inequalities have exactly one integer solution (1, 3)T , but the largest cube
contained by the inequalities has edge length e = 3

17 and center point ( 3
17 ,

3
2 )T ,

which rounds to (0, 2)T .
Instead of a cube, it is also possible to use a ball to compute a center point.

The result is the Chebyshev center [3], i.e., the center of a largest ball that fits
into the polyhedron:

maximize xr

subject to Ax + a′xr ≤ b, where a′i = ‖ai‖2
xr ≥ 0 .

However, the coefficients a′i are then defined via the 2-norm ‖ai‖2 =
√∑n

j=1 a
2
ij

and are, therefore, potentially irrational. As theory solvers in the SMT context
use exact rational arithmetic, the Chebyshev center is not straightforward to
integrate.

The largest cube test also upholds the incremental advantages of the dual
simplex algorithm proposed by Dutertre and de Moura [9]. The only difference
is the extra column a′ xe

2 , which the theory solver can internally create while it
is notified of all potential arithmetic literals. Adding this column from the start
does not influence the correctness of the solution because xe ≥ 0 guarantees that
the largest cube test is satisfiable exactly when the original inequalities Ax ≤ b
are satisfiable. Even for explanations of unsatisfiability, it suffices to remove the
bound xe ≥ 0 to obtain an explanation for the original inequalities Ax ≤ b.
The only disadvantage is the additional variable xe. However, increasing xe only
shrinks the search space. Therefore, increasing xe can never resolve any conflicts
during the satisfiability search. The simplex solver recognizes this with at least
one additional pivot that sets xe to 0. Hence, adding the extra column a′ xe

2 from
the beginning has only constant influence on the theory solver’s run-time, and
is therefore negligible.

4.2 Unit Cube Test

Most SMT theory solvers implement a simplex algorithm that is specialized
towards feasibility and not towards optimization [1, 6, 9, 12]. Therefore, a test
based on optimization, such as the largest cube test, does not fit well with
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existing implementations. As an alternative, we have developed a second test
based on cubes that does not need optimization.

We avoid optimization by fixing the edge length e to the value 1 for all
the cubes Cn

e (z) we consider (see Figure 6). We do so because cubes Cn
1 (z) of

edge length 1 are the smallest cubes to always guarantee an integer solution,
completely independent of the center point z. A cube with edge length 1 is also
called a unit cube. To prove this guarantee, we first fix e = 1 in the definition of
cubes, Cn

1 (z) =
{
x ∈ Rn : ∀j ∈ 1, . . . , n. |xj − zj | ≤ 1

2

}
, and look at the following

property for the rounding operator d.c: ∀zj ∈ R.|dzjc− zj | ≤ 1
2 . We see that any

unit cube contains a closest integer dzc to its center point z. Furthermore, 1
is the smallest edge length that guarantees an integer solution for a cube with
center point z = (. . . , 1

2 , . . .)
T . Thus, 1 is the smallest value that we can fix as

an edge length to guarantee an integer solution for all cubes Cn
1 (z).

Our second test tries to find a unit cube that fits into the polyhedron Ax ≤ b
and, thereby, a guarantee for an integer solution for Ax ≤ b. Again, we employ
the linear cube transformation from Section 3 and obtain the linear program:

Az ≤ b′, where b′i = bi − 1
2 ‖ai‖1 .

In addition to being a linear program without an optimization objective, we
only have to change the row bounds b′i of the original inequalities. In the dual
simplex algorithm proposed by Dutertre and de Moura [9] and implemented in
many SMT theory solvers [1, 6, 9, 12], such a change of bounds is already part
of the framework so that integrating the unit cube test into theory solvers is
possible with only minor adjustments to the existing implementation. Since our
unit cube test requires only an exchange of bounds, we can easily return to the
original polyhedron by reverting the bounds. In doing so, the unit cube test
upholds the incremental connection between the different original polyhedra.

5 Experiments

While our tests are useful for many types of polyhedra, the motivation for our
tests stems from a special type of polyhedra, so-called infinite lattice width poly-
hedra [16]. A polyhedron Ax ≤ b has infinite lattice width if for every objective
c ∈ Rn \ {0}, either its maximum or minimum objective value is unbounded, or
formally:
∀c ∈ Rn \ {0}. sup

{
cTx | x ∈ PA

b

}
=∞ or inf

{
cTx | x ∈ PA

b

}
= −∞ .

Polyhedra with infinite lattice width seem trivial at first glance because their
interior expands arbitrarily far in all directions (see Figure 5). Therefore, a poly-
hedron with infinite lattice width contains an infinite number of integer solu-
tions [16]. Nonetheless, many SMT theory solvers have proven to be inefficient
on those polyhedra because they use a branch-and-bound approach with an un-
derlying simplex solver [9]. Although such an approach will terminate inside
finite a priori bounds [18], it does not explore the infinite interior, but rather
directs the search along the solutions suggested by the simplex solver: the ver-
tices of the polyhedron. Thus, the SMT theory solvers concentrate their search
on a bounded part of the polyhedron. This bounded part contains only a finite
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number of integer solutions, whereas the complete interior contains infinitely
many integer solutions. The advantage of our cube tests is that they actually
exploit the infinite interior because polyhedra with infinite lattice width contain
cubes for every edge length (see Figure 5). Our tests are always successful on
polyhedra with infinite lattice width and usually need only a small number of
pivoting steps before finding a solution.

Lemma 5. Let Ax ≤ b be a polyhedron. Let a′ ∈ Zm be a vector such that its
components are a′i = ‖ai‖1. Then, the following two statements are equivalent:
(1) Ax ≤ b contains a cube Cn

e (z) for every e ∈ R≥0, and
(2) Ax ≤ b has infinite lattice width.
Or formally:
(1) ∀e ∈ R≥0. ∃x ∈ Rn. Ax ≤ b− e

2 · a
′,

(2) ∀c ∈ Rn \ {0}. sup
{
cTx | x ∈ PA

b

}
=∞ or inf

{
cTx | x ∈ PA

b

}
= −∞ .

Proof. (1)⇒ (2): We first assume that Ax ≤ b contains a cube Cn
e (z) for every

e ∈ R≥0. Note that the center point z depends on the edge length e. Furthermore,
we define the function:

width(c, S) =
(
sup

{
cTx | x ∈ S)

}
+ sup

{
−cTx | x ∈ S)

})
(1)

for every vector c ∈ Rn \{0} and for every set of points S ⊆ Rn. Then, we prove
that:

lime→∞ width(c, Cn
e (.))→∞ .

In Section 3, we have shown that:
sup

{
cTx | x ∈ Cn

e (z)
}

= cT z + e
2 · ‖c‖1 , and (2)

sup
{
−cTx | x ∈ Cn

e (z)
}

= −cT z + e
2 · ‖c‖1 . (3)

Therefore, width(c, Cn
e (z)) = e · ‖c‖1, which is independent of z. After inserting

(2) and (3) into (1), we get:
lime→∞width(c, Cn

e (.)) = lime→∞ e · ‖c‖1 →∞ .
Since Ax ≤ b contains cubes Cn

e (z) for all e ∈ R, it holds for all e ∈ R that
width(c, PA

b ) ≥ width(c, Cn
e (.)) ,

and, thus, width(c, PA
b ) =∞. Since PA

b is also convex, it must hold that:
sup

{
cTx | x ∈ PA

b

}
=∞ or inf

{
cTx | x ∈ PA

b

}
= −∞ .

(2) ⇒ (1): By contradiction. Assume that Ax ≤ b has infinite lattice width
but that there exists an e ∈ R≥0 such that Ax ≤ b contains no cube Cn

e (z) of
edge length e. By Corollary 3, Ax ≤ b contains no cube Cn

e (z) of edge length e
implies that Ax ≤ b− e

2 ·a
′ is unsatisfiable. By Farkas Lemma [3], Ax ≤ b− e

2 ·a
′

is unsatisfiable implies that there exists a y ∈ Rm such that: (a) yi ≥ 0 for all
i ∈ {1, . . . ,m}, (b) yk > 0 for at least one k ∈ {1, . . . ,m}, (c) yTA = 0, and (d)
0 > yT b − e

2 · y
Ta′. Because of (b), we can transform the equality (c) into the

following form:

ak = −
∑m

i=1,i6=k

(
yi

yk
ai

)
. (4)

By multiplying (4) with an x ∈ PA
b , we get: aTk x = −

∑m
i=1,i6=k

(
yi

yk
aTi x

)
. Since

aTi x ≤ bi and yi ≥ 0, we get a finite lower bound for aTk x:

aTk x = −
∑m

i=1,i6=k

(
yi

yk
aTi x

)
≥ −

∑m
i=1,i6=k

(
yi

yk
bi

)
.

Thus, the upper bound sup
{
aTk x | x ∈ PA

b

}
≤ bk < ∞ and the lower bound
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Benchmark Name CAV-2009 DILLIG PRIME-CONE SLACKS ROTATE
#Instances 503 229 19 229 229

Solvers: solved time solved time solved time solved time solved time

SPASS-IQ-0.1+uc 503 22 229 9 19 0.4 229 26 229 9
SPASS-IQ-0.1 503 713 229 218 19 0.4 197 95 229 214

ctrl-ergo 503 12 229 5 19 0.4 229 46 24 6760
cvc4-1.4 467 12903 206 4146 18 3 152 4061 208 6964

mathsat5-3.9 503 6409 225 2314 19 3.5 181 4577 229 1513
yices-2.4.2 472 11461 213 2563 19 0.1 147 5767 180 10171
z3-4.4.0 466 764 213 525 19 0.2 158 383 213 528

Fig. 7. Experimental Results

inf
{
aTk x | x ∈ PA

b

}
≥ −

∑m
i=1,i6=k

(
yi

yk
bi

)
> −∞ are finite, which contradicts

the assumption that Ax ≤ b has infinite lattice width.

We have found instances of polyhedra with the infinite lattice width property
in some classes of the SMT-LIB benchmarks. These instances are 229 of the
233 dillig benchmarks designed by Dillig et al. [7], 503 of the 591 CAV-2009
benchmarks also by Dillig et al. [7], 229 of the 233 slacks benchmarks which
are the dillig benchmarks extended with slack variables [14], and 19 of the 37
prime-cone benchmarks, that is, “a group of crafted benchmarks encoding a
tight n-dimensional cone around the point whose coordinates are the first n
prime numbers” [14]. The remaining problems (4 from dillig, 88 from CAV-
2009, 4 from slacks, and 18 from prime-cone) do not fulfill the infinite lattice
width property because they are either tightly bounded or unsatisfiable. For
our experiments, we look only at the instances of those benchmark classes that
actually fulfill the infinite lattice width property.

Using these benchmark instances, we have confirmed our theoretical assump-
tions (Lemma 5) in practice. We integrated the unit cube test into our own
branch-and-bound solver SPASS-IQ1 and ran it on the infinite lattice width in-
stances; once with the unit cube test turned on (SPASS-IQ-0.1+uc) and once
with the test turned off (SPASS-IQ-0.1 ). For every problem, SPASS-IQ-0.1+uc
applies the unit cube test exactly once. This application happens before we start
the branch-and-bound approach. We also compared our solver with some of the
state-of-the-art SMT solvers currently available for linear integer arithmetic:
cvc4-1.4 [1], mathsat5-3.9 [5], yices2.4.2 [8], and z3-4.4.0 [6]. As mentioned be-
fore, all these solvers employ a branch-and-bound approach with an underlying
dual simplex solver [9].

The solvers had to solve each problem in under 10 minutes. For the exper-
iments, we used a Debian Linux server with 32 Intel Xeon E5-4640 (2.4 GHz)
processors and 512 GB RAM. Figure 7 lists the results of the different solvers
(column one) on the different benchmark classes (row one). Row two lists the
number of benchmark instances we considered for our experiments. For each
combination of benchmark class and solver, we have listed the number of in-
stances the solver could solve in the given time as well as the total time (in

1 http://www.spass-prover.org/spass-iq
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seconds) of the instances solved (columns labelled with “solved” and “time”,
respectively).

Our solver that employs the unit cube test solves all instances with the
application of the unit cube test and is 25 times faster than our solver without
the test. The SMT theory solvers in their standard setting were not able to solve
all instances within the allotted time. Moreover, our unit cube test was over 100
times faster than any state-of-the-art SMT solver.

We also compared our test with the ctrl-ergo solver, which includes a sub-
routine that is essentially the dual to our largest cube test [2]. As expected,
both approaches are comparable for infinite lattice width polyhedra. In order to
also compare the two approaches on benchmarks without infinite lattice width,
we created the rotate benchmarks by adding the same four inequalities to all
infinite width instances of the dillig benchmarks. These four inequalities essen-
tially describe a square bounding the variables x0 and x1 in an interval [−u, u].
For a large enough choice of u (e.g., u = 210), the square is so large that the
benchmarks are still satisfiable and not absolutely trivial for branch-and-bound
solvers. To add a challenge, we rotated the square by a small factor 1/r, which
resulted in the following four inequalities:

−b · r · r + r ≤ b · r · x0 − x1 ≤ b · r · r − r , and
−b · r · r + r ≤ x0 + b · r · x1 ≤ b · r · r − r .

These changes have nearly no influence on SPASS-IQ, and two SMT solvers
even benefit from the proposed changes. However, the rotate benchmarks are
very hard for ctrl-ergo because its subroutine detects only infinite lattice width.
Without infinite lattice width, ctrl-ergo starts its search from the boundaries
of the polyhedron instead of looking at the polyhedron’s interior. We can even
control the number of iterations (r2) ctrl-ergo spends on the parts of the bound-
ary without any integer solutions if we choose r accordingly (e.g., r = 210).
In contrast, we use our cube tests to also extract interior points for rounding.
This difference makes our tests much more stable under consideration of small
changes to the polyhedron.

There exist alternative methods for solving linear integer constraints that do
not rely on a branch-and-bound approach [4, 14]. These have not yet matured
enough to be competitive with our tests or state-of-the-art SMT theory solvers.

Most problems in the linear integer arithmetic SMT-LIB benchmarks with
finite lattice width can be solved without using any actual integer arithmetic
technique+. A standard simplex solver for the reals typically finds a real solution
for such a problem that is also an integer solution. Applying the unit cube test
on these trivial problem classes is a waste of time, worst case it doubles the
eventual solution time. For these examples it is beneficial to first compute a
general real solution and to check it for integer satisfiability before applying the
unit cube test. This has the additional benefit that real unsatisfiable problems
are also filtered out before applying the unit cube test. Also, the unit cube
test is almost guaranteed to fail on problems containing boolean variables, i.e.,
variables that are either 0 or 1, unless they are absolutely trivial and describe a
unit cube themselves. Whenever the problem contains a boolean variable, it is
often beneficial to skip the unit cube test.
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6 Further Cube Test Applications

Equalities are the greatest challenge for the applicability of our cube tests. A
polyhedron contains an equality aTEx = bE if aTEx = bE holds for all x ∈ PA

b .
An equality contained in Ax ≤ b is explicit if Ax ≤ b includes the inequalities
aTEx ≤ bE and −aTEx ≤ −bE . Otherwise, the equality is implicit. Polyhedra
containing equalities have only surface points and, therefore, neither an interior
nor a center. Thus, a largest cube has edge length zero and is just a point in the
original polyhedron. Similar problems occur if we allow not only inequalities but
also other types of constraints, such as negated equalities (aTi x 6= bi), divisibility
constraints (d | aTi x + bi, i.e., d ∈ Z divides aTi x + bi), and negated divisibility
constraints (d - aTi x+ bi). In this section, we propose additional transformations
and strategies that are useful for resolving the aforementioned challenges and
are also applicable even beyond our tests.

First of all, we can transform any divisibility constraint and negated divisibil-
ity constraint into an equality by introducing additional variables. For divisibility
constraints d | aTi x + bi, this transformation is known as the diophantine repre-
sentation: ∃q ∈ Z. dq−aTi x = bi. For negated divisibility constraints d - aTi x+bi,
there exists a similar transformation: ∃q ∈ Z. ∃r ∈ Z. dq + r − aTi x = bi ∧ 1 ≤
r ≤ d−1. Both of these transformations describe the formal definition of dividing
aTi x+bi by d: aTi x+bi = dq+r, where q is the quotient of the division and r the
remainder. Since the divisibility constraint enforces that d divides aTi x + bi, the
remainder r must be zero. Likewise, the negated divisibility constraint enforces
that d does not divide aTi x + bi. Therefore, the remainder r lies between 1 and
d − 1. These transformations are useful beyond our tests because they can be
used to integrate (negated) divisibility constraints into the simplex algorithm.
The only disadvantage is that we have to introduce additional variables q (and
r) for every (negated) divisibility constraint.

Next, we eliminate all equalities from Ax ≤ b. We do so by taking an equality
aTi x = bi contained in Ax ≤ b and replacing a variable xk in Ax ≤ b by substitut-
ing with xk := 1

aik
(bi−

∑n
j=1,j 6=k aijxj), where aik > 0. Naturally, replacing xk in

Ax ≤ b creates a new system of inequalities A′x′ ≤ b′, where A′ ∈ Q(m−1)×(n−1),
b′ ∈ Q(m−1), and x′ = (x1, . . . , xk−1, xk+1, . . . , xn)T . We iteratively repeat this
approach until our system of inequalities AIxI ≤ bI contains no more equalities.
As a by-product, we get a system of equalities AEx = bE consisting of all equal-
ities we have found. The two systems of constraints AIxI ≤ bI and AEx = bE

together are equivalent to Ax ≤ b, but AIxI ≤ bI contains no equalities while
AEx = bE contains (at least implicitly) all equalities of Ax ≤ b. We can now
completely eliminate the equalities AEx = bE from Ax ≤ b by combining this
approach with a diophantine equation handler [12]. The result is a new system
of inequalities that contains no equalities and has an integer solution if and only
if Ax ≤ b has one.

Extracting equalities has further applications; for instance, the derivation of
equalities is needed for the combination of theories by the Nelson-Oppen method.
We can even check whether an arbitrary equality aTEx = bE is an equality of
Ax ≤ b by transforming the equalities AEx = bE into a substitution and applying
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this substitution to aTEx = bE . The equality aTEx = bE is only contained in
Ax ≤ b if aTEx = bE simplifies to 0 = 0 after the substitution.

However, we are still missing one step in our elimination approach: how do
we efficiently find an equality aTi x = bi contained in Ax ≤ b so that we can
substitute with it? The answer are cubes, presented in the below lemma.

Lemma 6. Let Ax ≤ b be a polyhedron. Then, exactly one of the following
statements is true:
(1) Ax ≤ b contains an equality aTEx = bE with aE 6= 0, or
(2) Ax ≤ b contains a cube with edge length e > 0.

Proof. This proof is a case distinction over the sign of xe for the following slightly
simplified version of the largest cube test:

maximize xe

subject to Ax + a′xe ≤ b, where a′i = 1
2 ‖ai‖1 .

(5)

If the maximum objective value is positive, Ax ≤ b contains a cube with edge
length e > 0. Therefore, we have to prove that Ax ≤ b contains no equality aTEx =
bE with aE 6= 0, which we will do by contradiction. Assume Ax ≤ b contains
an equality aTEx = bE with aE 6= 0. Then, by transitivity of the subset relation,
the polyhedron consisting of the inequalities aTEx ≤ bE and −aTEx ≤ −bE must
also contain a cube of edge length e. However, applying the transformation from
Corollary 3 to this new polyhedron results in two contradicting inequalities:
aTEx ≤ bE − ‖aE‖1 ·

e
2 and −aTEx ≤ −bE − ‖aE‖1 ·

e
2 . Thus, (1) and (2) cannot

hold at the same time.

If the maximum objective value is zero, then Ax ≤ b is satisfiable but contains
no cube with edge length e > 0. Therefore, we have to prove that Ax ≤ b contains
an equality aTEx = bE with aE 6= 0. Consider the dual linear program of (5):

minimize yT b
subject to yTA = 0 ,

yTa′ = 1 , where a′i = 1
2 ‖ai‖1 ,

y ≥ 0 .

(6)

Due to strong duality, the objectives of the dual and primal linear programs are
equal. Therefore, there exists a y ∈ Rm that has objective yT b = 0 and that
satisfies the dual (6). Since yTa′ = 1 and a′i ≥ 0 and yi ≥ 0 holds, there exists
a k ∈ {1, . . . ,m} such that yk > 0. By multiplying yTA = 0 with an x ∈ PA

b

and isolating aTk x, we get: aTk x = −
∑m

i=1,i6=k

(
yi

yk
aTi x

)
. Using yi ≥ 0, and our

original inequalities aTi x ≤ bi, we get a finite lower bound for aTk x:

aTk x = −
∑m

i=1,i6=k

(
yi

yk
aTi x

)
≥ −

∑m
i=1,i6=k

(
yi

yk
bi

)
.

Now, we reformulate yT b = 0 analogously and get: bk = −
∑m

i=1,i6=k

(
yi

yk
bi

)
.

Thus, aTk x = bk is an equality contained in the original inequalities Ax ≤ b.

If the maximum objective value is negative, Ax ≤ b is unsatisfiable and
contains no cube with edge length e > 0. Since PA

b is now empty, Ax ≤ b
contains all equalities.
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By Lemma 6 a polyhedron contains a cube with a positive edge length e > 0,
or an equality. Since e is arbitrarily small, the factor e

2 ‖ai‖1 is also arbitrarily
small and aTi x+ e

2 ‖ai‖1 ≤ bi converges to aTi x < bi. Therefore, Ax ≤ b contains
an equality if and only if Ax < b is unsatisfiable. We can solve this system of
strict inequalities with the dual simplex algorithm by Dutertre and de Moura [9].
In case Ax < b is unsatisfiable, the algorithm returns an explanation, i.e., a
minimal set C of unsatisfiable constraints aTi x < bi from Ax < b. If Ax ≤ b
itself was satisfiable, then we can extract equalities from this explanation: every
aTi x < bi ∈ C implies that Ax ≤ b contains the equality aTi x = bi.

Finally, we have two ways of handling negated equalities aTi x 6= bi. Either we
split our set of constraints into two sets of constraints, replacing aTi x 6= bi in the
first one with aTi x ≤ bi − 1 and in the second one with −aTi x ≤ −bi − 1; or, we
ignore all negated equalities during the calculation of the tests themselves and
use the negated equalities only to verify the integer solutions returned by the
tests.

7 Conclusion

We have presented two tests based on cubes: the largest cube test and the
unit cube test. Our tests can be integrated into SMT theory solvers without
sacrificing the advantages SMT solvers gain from the incremental structure of
subsequent subproblems. Furthermore, our experiments have shown that these
tests increase efficiency on certain polyhedra such that previously hard sets of
constraints become trivial. We have even shown that major obstacles to our tests,
for example equalities, can be handled through generally useful preprocessing
steps. Moreover, these preprocessing steps led to an additional application for
our tests: finding equalities.

Our future research will investigate further applications of our tests. We
expect that we can use cubes not only for the detection of equalities, but also for
the detection of (un)bounded directions. We can likely use the largest cube test
as a selection strategy for branching by always choosing the branch containing
the largest cube. This is in all likelihood a beneficial strategy since the largest
cube is a good heuristic for the branch with the most space for integer solutions.
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